II B.Tech I Semester(R09) Supplementary Examinations, May 2011 SIGNALS \& SYSTEMS

(Common to Electronics \& Instrumentation Engineering, Electronics \& Control Engineering, Electronics \& Communication Engineering, Electronics \& Computer Engineering) Time: 3 hours

Max Marks: 70

Answer any FIVE questions

All questions carry equal marks

1. (a) Verify the following signals $\sin n \omega_{0} t$ and $\sin m \omega_{0} t$ are orthogonal or not over the interval $\left(t_{0}, t_{0}+2 / \omega 0\right)$
(b) Approximate the function described below by a wave form sin t over the interval $(0,2 \pi)$. The function is
$\mathrm{f}(\mathrm{t})=1 \quad 0<t<\pi$
$=-1 \quad \pi<t<2 \pi$
Also sketch the original function and approximated function.
2. (a) Expand following function $f(t)$ by trigonometric Fourier series over the interval $(0,1)$. In this interval $f(t)$ is expressed as $f(t)=A t$
(b) Prove that discrete magnitude spectrum is symmetrical about vertical axis whereas phase spectrum anti-symmetrical about vertical axis.
3. (a) Find the Fourier transform of symmetrical gate pulse and sketch the Spectrum
(b) State and prove following properties of Fourier transform
i. Time shifting
ii. Differentiation time domain
4. (a) Derive the relationship between rise time and bandwidth
(b) Sketch the frequency response of ideal LPF, HPF and BPF.
5. (a) State and frequency Conyolution property of Fourier transform
(b) Find the correlation of symmetrical gate pulse with amplitude and time duration ' 1 ' with itself.
(c) Evaluate $u(t) * u(t)$
6. (a) Sketch the spectrum of naturally sampled signal for following cases
i. $\omega_{0}=2 \omega_{m}$
ii. $\omega_{0}>2 \omega_{m}$
iii. $\omega_{0}<2 \omega_{m}$

Where ' ω_{0} ' is frequency corresponding to sampling interval and ' ω_{m} 'is maximum frequency in the spectrum of base band signal. Explain the each sketch.
(b) Explain the reconstruction of signal from its samples.
7. (a) Find Laplace transforms and sketches their ROC of
i. $\mathrm{x}(\mathrm{t})=\mathrm{u}(\mathrm{t}-5)$
ii. $x(t)=e_{0}^{j^{w t}} u(t)$
(b) Find the inverse Laplace transform of
$\mathrm{X}(\mathrm{s})=(-5 \mathrm{~s}-7) /(\mathrm{s}+1)(\mathrm{s}-1)(\mathrm{s}+2)$
8. (a) Determine z - transform, pole - zero locations and sketch of ROC of following signal $\mathrm{X}(\mathrm{n})=-\mathrm{u}(-\mathrm{n}-1)+(1 / 2)^{n} \mathrm{u}(\mathrm{n})$
(b) Find the inverse z - transform of
$\mathrm{X}(\mathrm{z})=\left(2+\mathrm{z}^{-1}\right) /\left(1-0.5 \mathrm{z}^{-1}\right) \quad$ with $\mathrm{ROC}|z|>1 / 2$
Using power series expansion

